A density functional tight binding study of acetic acid adsorption on crystalline and amorphous surfaces of titania.
نویسندگان
چکیده
We present a comparative density functional tight binding study of an organic molecule attachment to TiO2 via a carboxylic group, with the example of acetic acid. For the first time, binding to low-energy surfaces of crystalline anatase (101), rutile (110) and (B)-TiO2 (001), as well as to the surface of amorphous (a-) TiO2 is compared with the same computational setup. On all surfaces, bidentate configurations are identified as providing the strongest adsorption energy, Eads = -1.93, -2.49 and -1.09 eV for anatase, rutile and (B)-TiO2, respectively. For monodentate configurations, the strongest Eads = -1.06, -1.11 and -0.86 eV for anatase, rutile and (B)-TiO2, respectively. Multiple monodentate and bidentate configurations are identified on a-TiO2 with a distribution of adsorption energies and with the lowest energy configuration having stronger bonding than that of the crystalline counterparts, with Eads up to -4.92 eV for bidentate and -1.83 eV for monodentate adsorption. Amorphous TiO2 can therefore be used to achieve strong anchoring of organic molecules, such as dyes, that bind via a -COOH group. While the presence of the surface leads to a contraction of the band gap vs. the bulk, molecular adsorption caused no appreciable effect on the band structure around the gap in any of the systems.
منابع مشابه
Calculation for Energy of (111) Surfaces of Palladium in Tight Binding Model
In this work calculation of energetics of transition metal surfaces is presented. The tight-binding model is employed in order to calculate the energetics. The tight-binding basis set is limited to d orbitals which are valid for elements at the end of transition metals series. In our analysis we concentrated on electronic effects at temperature T=0 K, this means that no entropic term will be pr...
متن کاملEffect of Curvature on the Mechanical Properties of Graphene: A Density Functional Tight-binding Approach
Due to the high cost of experimental analyses, researchers used atomistic modeling methods for predicting the mechanical behavior of the materials in the fields of nanotechnology. In the pre-sent study the Self-Consistent Charge Density Functional Tight-Binding (SCC-DFTB) was used to calculate Young's moduli and average potential energy of the straight and curved graphenes with different curvat...
متن کاملDesign of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study
The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...
متن کاملExploration of the adsorption of caffeine molecule on the TiO2 nanostructures: A density functional theory study
The first principles were calculated to study the adsorption behaviors of caffeine molecules on the pristineand N-doped TiO2 anatase nanoparticles. Both oxygen and nitrogen in the caffeine molecule can reactstrongly with TiO2 nanoparticle. Thus, the binding sites were located on the oxygen or nitrogen atom ofthe caffeine, while the binding site of the TiO2 nanoparticle occurs ...
متن کاملThe effect of nanoparticles and organic acids on bacterial nano- cellulose synthesis, crystalline structure and water holding capacity
Bacterial cellulose is a biological polymer with a variety of extraordinary properties which make it a functional material for different industrial fields. This work aimed at monitoring the effects of three different organic acids and nanoparticles on the production, water holding capacity and structural characteristics of bacterial cellulose. Different concentrations of organic acids and nanop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 20 2 شماره
صفحات -
تاریخ انتشار 2015